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Flooded Areas during Hurricane Harvey
Maximum Flooding during Hurricane Harvey
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Hurricane Harvey was one of the worst in US history

Record breaking rains of over 60 inches (over 150 cm); Houston
MSA had 36 to 48 inches.

125 billion USD in damages, including 300,000 structures.

68+ direct deaths; approx. 35 indirect deaths; 40,000 displaced.

Storms will likely to remain extremely costly.
I Storms are becoming slower;
I Rising atmospheric moisture due to higher sea surface temp.
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Natural disasters have deleterious effects on health

Exposure to disasters is linked to long term health impacts, such
as PTSD and depression.

Underprivileged groups are more prone to poor outcomes.
I Esp. blacks and Spanish-preferring Hispanics
I 1) exposure, 2) vulnerability, 3) social network disruption.
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Research Goals

How do natural disasters influence individual well-being, especially
in terms of social engagement and political participation?

We focus on physical displacement and disruptions to social
networks, which will hopefully uncover something about
inter-ethnic differences in post-disaster health outcomes.

Today : The relationship between exposure to flooding and social
network engagement (in terms of tweeting frequency).
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Flooding and Tweeting

Mar 1 Jun 1 Harvey Dec 24 May 1 Anniversary
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Difference in Difference Framework

Yi ,t = α+ β ∗ Floodi + τ ∗ Harveyt + γ(Floodi ∗ Harveyt) + εi ,t

I Yi ,t is tweet frequency of individual i at time t;
I Floodi is a continuous measure of how much flooding

individual i experienced;
I Harveyt is an indicator for days on or after August 25.

γ is the DID effect we are interested in.
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Sample

Tweet

County

Sampling

I 16050 unique users
I 15689 active and

public
I 15631 old enough
I 1398 final sample
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Home Locations
If profile “location” available, use it. If not, take modal tweeting
census tract (10pm to 8am).
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Home Locations
If profile “location” available, use it. If not, take modal tweeting
census tract (10pm to 8am).
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Flooding by Census Tract
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Results

Pooled Fixed Effects
Coefficient s.e. Coefficient s.e.

Harvey × Flooding 0.669* 0.081 0.669* 0.081
Flooding −0.849* 0.067 −0.849* 0.066
Harvey −0.547* 0.011 −0.673* 0.125

Intercept 1.960* 0.009 1.913* 0.089
(Day Fixed Effects)

i = 1398, t = 546; ∗ = p < 0.001

I After Harvey, those affected by flooding tended to tweet
more (after accounting for general trend of decreased
tweeting).
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In Progress

We are currently in the progress of obtaining the following data:
I Voter registration files from Texas;
I Tweet data from Dallas.

We are also working on methods to estimate our measures with
greater validity.
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Questions or comments?

We can be reached at:
I Ted Chen: ted.hsuanyun.chen@gmail.com
I Chris Fariss: cjf0006@gmail.com
I Xu Xu: xux112@psu.edu

A copy of the paper and these slides are available at
https://tedhchen.com/pages/research.html
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